
Classical distribution functions derived from Wigner distribution functions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 3709

(http://iopscience.iop.org/0305-4470/28/13/015)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 23:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A: Math. Gen. 28 (1995) 3709-3717. Printed in the UK 
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Abstract, A mapping which relates the Wigner phase-space distribution function associated 
with a given statiomy quantum-mechanical wavefunction to a specific solution of the time- 
independent Liouville vanspolt equation is obtained. Two examples are studied. 

1. Introduction 

There has been much concern about the classical limit of quantum mechanics. This limit 
may be accomplished in two steps: first one makes a mapping of the Wigner phase-space 
distribution function (WOF) to a classical phase-space distribution function (CDF) which still 
might depend on h, and in a second step the h = 0 limit is taken. Here we shall be interested 
in the first step, namely in a prescription which relates the WDF of a given stationary quantum 
mechanical wavefunction, a solution of the Schrijdinger equation, to a specific solution of 
the Liouville equation, both subject to the same potential. We first present a short derivation 
of the expression for the CDF, discuss a few of its praperties and then give two examples, 
one corresponding to a bound state and the second to a scattering state. 

Our prescription for the CDF corresponds to taking averages of the WDF over classical 
trajectories. In the special case of linear or quadratic potentials the WDF coincides with the 
CDF [1,2], as in this case the WDF already satisfies the Liouville equation. In the case in 
which the Wigner function is generated by a scattering solution of the Schrodinger equation, 
the CDF gives the classical limit, it describes individual trajectories corresponding to classical 
scattering. 

Here we only consider problems in one degree of freedom. An extension which might 
be considered is semiclassical elastic and inelastic scattering of a particle by a two-body 
bound state. Using the mapping introduced here, essentially one expects to obtain the 
approximation introduced by Lee and Scully [3], except that, instead of describing the initial 
and final two-body bound states by a WOF [4], the corresponding CDF obtained through our 
prescription would have to be used. 

2. The Classical distribution fonction 

The Wigner distribution function p(q ,  p ,  t) satisfies the equation 151 

(2.1) 
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where (q,  p )  is a point in phase space and the kernel K is given by 

where V(q)  is the potential. In the classical limit [5] equation (2.2) becomes 

and equation (2.1) goes over into the Liouville equation 

(2.4) 

The problem we are addressing is to find the particular solution pc of (2.4), which may 
be considered the correct semiclassical approximation of a given solution p of (2.1). One 
may relate p and pc, for instance, by assuming that at time t = to both distributions coincide 
and that afterwards they evolve following (2.1) and (2.4), respectively. The classical path 
of a particle subject to the potential V ( q )  which at time f = 0 occupies the phase-space 
point (40, PO) will be denoted by 

q = Q(qo, PO, t )  (2.5) 

qo = Q(qo, Po. 0) (2.6) 

P e ( q . ~ , o  = p ( Q ( q . ~ . t o - - t ) , ~ ( q , p , i o  - t ) , t o ) .  (2.7) 
However, this mapping is not unique due to the arbitrariness of to. In addition, for 

stationary p. the function pc will, in general, not be stationary, a property which ought 
to be preserved in the semiclassical approximation. However, in the case of scattering, 
one may derive an appropriate mapping from (2.7). Consider p(q, p .  t )  as the WDF which 
corresponds to the scattering solution of the Schrodinger equation such that one has an 
incident plane wave at time t = b. By making to recede to -CO, p as well as pc (given 
by (2.7)) will become stationary. This CDF was introduced by Lee and Scully [3] and 
describes classical scattering. 

In order to derive the proposed mapping we introduce the retarded Green's function 
C,(q, p ;  q', p'. t - r'), which satisfies the inhomogeneous Liouville equation [I] 

P = Pko .  PO, f) 
so that 

PO = P(qo, PO, 0). 
Then the CDF, pc which at time to coincides with the WDF p ,  will be given by [6] 

ac, p a c ,  avac, - + - - - - - = ~ ( q - q ' ) S ( p - p ' ) S ( t - r ' ) .  
at m aq a4 ap 

With the help of G, we Write the following integral equation relating p and pc  [I]: 

P(q,p,f) = ~ ~ ( q . ~ . f ) - ~ ~ d r ' ~ d q ' d p ~ C , ( q . p : q ' , p ' . f - r ' )  -m 

If a WDF p satisfying (2.1) is inserted into (2.9), the resulting function pc can be shown to 
satisfy (2.4). n u s ,  equation (2.9) may, in principle, generate a CDF from a known WDF, 
and we shall use it as a starting point of our prescription for the determination of pc. Here 
let us make the remark that, conversely, for a pe satisfying (U), equation (2.9) does not, 
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in~general, yield a solution p corresponding to a quantum mechanically pure state. In many 
cases the integral on the right-hand side of (2.9) does not converge as it stands and, in order 
to obtain definite results, a convergence factor has to be introduced. We shall utilize the 
usual factor exp(Et'), the limit E + O+ is taken after the integration over time in (2.9) has 
been performed [7]. 

The WDF generated by a given wavefunction $(q, t) is [8] 

Here we shall mainly be interested in the case in which $ is stationary and thus p does not 
depend on the time. Next we shall try to rewrite (2.9) in a more manageable form. Either 
by expressing p in terms of $ through its definition (2.10). and by applying the ScIuMinger 
equation subsequently, or by directly using (2.1) and (2.3); equation (2.9) may be written 

p&, P. t) = p(q. P. t )  + lr dtf/ dq'dp'G,(q, p ;  q', p'. t - t') 

(2.11) 

Equation (2.11) is equivalent to (2.9) provided p satisfies (2.1). We make the remark here 
that in the particular case in which V ( q )  is quadratic in q, equation (2.11) reduces to the 
equation p = pc, as in this case (2.1) becomes identical to the Liouville equation, so that 
the integrand in (2.11) vanishes. The retarded Green's function (solution of (2.8)) is known 
to be 

Gdq, P; d.  P', 5 . 6 )  = e-CrG(Q(q, P. -5) - q')G(P(q, P, - 5 )  - p')tl+(r) (2.12) 

where Q and P are defined by (2.5) and (2.6), q+ is the step function and where, in addition, 
 we introduced the convergence factor explicitly. Inserting G ,  from (2.12) into (2.11) we 
get 

p&, P. t )  = p(q. P. t )  - &'exp(-& - t')) 

(2.13) 

The above expression may be further simplified by using the classical equations of motion 

from which we get 

(2.15) 

(2.16) 
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where pc(q. p ,  f) is seen to be independent of time provided p(q, p ,  t )  does not depend 
on it. In those cases in which E may be set equal to zero from the beginning we get from 
(2.16) 

(2.17) 

This expression gives us back the mapping defined previously through (2.7), in the special 
case in which the initial time to is set equal to -co. Thus, if the limit defined by (2.17) 
does exist the value of pc at the phase-space point (q, p )  is the value assumed by p at the 
initial ( f  = -m) phase-space point of the classical trajectory, which at time = 0 does 
pass through the point (q ,  p ) .  In what follows we shall assume that p does not depend on 
the time. Retuning to (2.16), introducing r = f' - t as a new variable of integration and 
performing an integration by parts we get for our mapping equation 

p d q .  p .  t )  = ,lim p(Q(q, p .  t'L p(q ,  P ,  t'), f'). 
r -+-m 

0 
P&. p )  = lim E d r  exp(€r)p(Q(q, P. 0 p(q ,  p ,  5 ) ) .  (2.18) 

f-rO+ 1, 
In the derivation of (2.18) we made use of condition (2.6). 

We now consider the special case in which the point (q ,  p )  belongs to a closed classical 
path. This happens for a system of one degree of freedom at phase-space points where the 
energy E(q, p )  is negative. In this case (2.17) is not applicable and we use (2.18). Let us 
perform the Fourier decomposition 

(2.19) 

where T ( q ,  p )  = 21r/o(q, p )  is the period associated with the trajectory. Inserting the 
expansion (2.19) into (2.18) we obtain that the only non-vanishing contribution in the 
E = 0, limit arises from the n = 0 term of the series (2.19). Thus we get 

T(9.p)  
P&. P )  = Ro@, P )  = (T(q. P I ) - '  /" dtp(Q(q. p 3  r ) ,  P ( q ,  P .  5 ) ) .  (2.20) 

0 

For points on the same closed path (2.20) gives the same value of pc as the trajectories 
associated with these points are connected to each other by making time translations and 
(2.20) is invariant under time translations. 

This last result can be seen to be valid in general. Thus, for two points (q, p )  and 
(4'. p') on the same path, consider the time interval Ar needed to go from one point to the 
other, that is, such that 

Q(q', p', 5 )  = Q(q, p ,  r + A d  'P(q', p' ,  5 )  = P(q,  p .  r + A T ) .  (2.21) 
From equation (2.18), by making r = r' + Ar we get 

dr' eC(r!+AI) p(Q(q', P'. 7'). P(q', P'. r')) 

(2.22) 
since the term with the finite integration interval Ar vanishes, so that p,(q, p )  will be 
constant along any trajectory, and hence a constant of motion. From this fact alone one 
concludes that pe satisfies the timeindependent Liouville equation. Thus, by taking the 
total derivative of pc with respect to the time, one gets 

= P&'. P') +)Ay+ E 

= P&'. P') 

(2.23) 
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Inserting E ( q ,  p) = p Z / 2 m  + V ( q )  one obtains the Liouville equation. 
Let us now discuss the important case of the WDF corresponding to a bound state in 

a potential which vanishes at infinity. For bound states it is known that p(q, p )  vanishes 
asymptotically as 141 tends to infinity. Since the trajectories having positive energy are not 
bounded but start at 141 = foo at time t = --bo, equation (2.17) may be applied directly, 
the result beiig that p,(q, p )  = 0 for points with positive energy E(q,  p ) .  Thus the mapped 
CDF may be viewed in this case as a stationary distribution function of classical particles 
trapped by the potential. 

It may be worthwhile pointing out that in the case of one degree of freedom the value 
of the CDF at a point (90, PO) corresponding to negative energies EO = E(@, PO), may also 
be obtained by taking the average of the corresponding WDF over the strip S(40, po, SE) 
defined by the points in phase space possessing an energy in the interval (Eo - y ,  Eo+ y), 
SE being an infinitesimal. In order to derive this result, consider for each energy E in the 
strip S(q0, PO, 6E) a classical trajectory ( Q ( E ,  t). P(E, I)), 0 < t < T(E) ,  T ( E )  being its 
period. Thus we get a one-to-one correspondence between the pairs (E, I) and the points 
(4. p) inside the strip. Consider the integral 

where we used (2.20) for pc and the fact that pc is constant along the classical paths. Now 
make the transformation of variables [9] 

q =~Q(E ,  t )  p = P ( E ,  t )  0 < t < T(E) (2.25) 

for the points on the strip. Then the volume element in phase space transforms according 
to dE  dr = IJ I dq dp, where the Jacobian J is given by 

(2.26) 

where we used Hamilton’s equations of motion. Thus an altemative expression for pc in 
the case of one degree of freedom is 

(2.27) 

3. The infinite square well 

As an example of a CDF generated by a WDF corresponding to a bound-state wavefunction 
we shall consider the ground state of the infinite square well 

The wavefunction is 
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and the corresponding wDF [IO] is given by 

+ (: + :)-‘sin[(: + K) (U - Q)] 

2P R 
+ ( y  :)-‘sin [ (7 - a) (a - e ) ] }  Q > 0 (3.3) 

P ( Q .  P )  = P(-Q,  P) Q 0. (3.4) 

The density p can also be seen to be symmetric under the exchange of P by -P. The 
trajectory which starts at time f = 0 at position q = -a and momentum p ( p  > 0) is given 
by 

P 2am o < t < - 
m P 
P P(-o, p ,  t )  = - p  
m P P 

Q(-a p ,  t )  = --f - a  

Q(-a, p,  f) = -t + 3a 

p(-a, p ,  t )  = p 
(3.5) 2am 4am 

< t < - .  - 

Following equation (2.20) we find for the CDF 

(3.6) 
where T = 4am f p  is the period of motion of the particle in the box. Making the change of 
variables q‘ = p t / m  - a  in the first integral of (3.6) and q’ = - p t / m  + 3a in the second, 
one gets 

(3.7) 

As the classical trajectory does pass through all coordinate points inside the box without 
change of momentum, we obtain for an arbitrary point in phase space 

It should be mentioned that in this example pc coincides with the quantum mechanical 
probability density in momentum space. We remark here that the result (3.7) may also be 
derived from (2.27). In the limit f i  -+ 0 equation (3.8) gives pc(q, p )  --f (2a)-’6(p) which 
describes a uniform distribution of particles at rest inside h e  box, that is, classically the 
particle is at rest in the ground state. 

4. The potential step 

As a second example let us consider the potential step 
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for incident energies E = kz/2m e VO. The wavefunction is written 1 2A cos (2 - i) 4 <cl 
*(q)  = 

2A cos (;) exp (-3) q > 0 A 

where 

K = (2mVo - k2)i  

and the phase 01 is given by 

. i k + ~  
i k - ~  

exp(io) = - . 

(4.2) 

(4.3) 

(4.4) 

The WDF in the half-space Q < 0, is given by [IO] 

S'+)(P, k )  sin ( 2(P + k) -  f)) (4.5) 

where 

k ( f 2 P k  - kZ + K') 

C(T2P + kI2 + ~ ' ] 4 P ( k  T P) ' 
SCr)(P, k )  = 

If Q z 0,we have 

Co(P, k )  = 4 ~ k ' [ ( 2 P  +k)'+ KZ]-'[(2p - k)'+ K2]- '  (4.9) 

(4.10) 

As can be verified from the above equation. the WDF is a symmetric function under the 
exchange of P by -P. 

In the calculation of the CDF we divide the phase space into the five sectors ( i x v )  as 
follows. 

(i) Subspace (q < 0, p > 0). In this subspace the classical trajectories satisfying the 
condition (2.6) are the straight lines 

P 
m (4.11) 

since no potential acts during this time. Inserting equation (4.11) into (4.3, we find that 
the evaluation of (2.18) for pc requires the following integrals: 

Q ( q , p , t )  = q  + -t P ( q ,  p .  0 = p t < 0 

0 €2 0 o f 0  
(4.12) 

c - o € 2 + o 2  [ 1 o = o  
limc dtef'cos(or) ='lim - = 
f+O s_, 

E f f  
dt e" sin(ot) = lim - = -o8(o)a 

e-0 €2 + oz 
(4.13) 
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By making the indicated substitutions we get, disregarding the integrals (4.12) which give 
vanishing contributions, 

pc(q, p )  = 41AI2{C(-)(p, k )  sin(28(-)q)(28(-)~)6(28(-)p) 
+ C w ( p ,  k )  ~in(2B(+)q)(ZB(~)p)6(28(~)p) 

-S(+)(p .  k )  cos(2B(+)q)(2~(+)p)6(2~")p)]  (4.14) 
-s(-) ( p ,  k )  COS(Z/9 (-)q) (2p'-'p)6 ( 2 p p )  

where 

(4.15) 

Taking account of the delta functions in (4.14) pc will be non-vanishing only at the momenta 
values p = k and p = 0,. With regard to p = k ,  the only contributing term in (4.14) is 
the term proportional to S(-)(p,  k )  because this function has a pole at p = k. Thus we find 
by inserting (4.7) into (4.14) 

Pc(q ,p)=IAI26(p-kk)  q < O  . P > O .  (4.16) 

At the value p = 0, of the momentum, we obtain that pc vanishes because of 
cancellations of the various contributions of (4.14). It should be observed that for 
equilibrium points ( p  = 0, aV/aq  = 0), pc does not need to be continuous, as in this 
case the classical trajectory shrinks to a single point. 

(ii) Subspace (q c 0, -m e p < 0). The trajectory which passes through a point 
(q ,  p )  in this subspace also passes through the point ( q ,  - p )  at an earlier time, because of 
reflection from the barrier at q = 0. As pc is a constant of motion we get for the points in 
sector (ii), 

d q 3  P) P&. -P) IAIZS(p + k ) .  (4.17) 

(iii) Subspace (q > 0, p > 0). From the fact that any trajectory that passes at time 
t = 0 throu h a given point (q ,  p )  in subspace (iii) does pass also through the point 
( -q ,  ,/*) in sector (i) at an earlier time, we get from (4.16) the result 

p&, p )  = M - 4 ,  m) = I A I 2 J ( m  - k ) .  (4.18) 
Since we are assuming k2 e ZmVo, we have pc = 0 in this subspace. 

(iv) Subspace (q 0, p c 0). The trajectories which at time f = 0 reach the points of this 
subspace start at q = +w at time t = -w. Since p ( q ,  p )  + 0 as q 4 +w we may use 
(2.17), concluding that pc vanishes in the sector (iv) of the phase space 

(v) Subspace (q e 0, p c -m). The same reasoning used for region (iv) shows that 
pc also vanishes in this sector. 

We thus come to the conclusion that the CDF which corresponds to the WDF given by 
(4.5) and (4.8) is 

(4.19) 

Equation (4.19) describes the reflection of a classical particle subject to the potential (4.1) 
for energies below the height of the barrier. Similarly, for incident energies above the 
barrier one finds that no particles will be reflected. These results may be generalized to 
scattering by a combination of square wells. 
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